Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors

Identifieur interne : 001596 ( Main/Repository ); précédent : 001595; suivant : 001597

Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors

Auteurs : RBID : Pascal:12-0099984

Descripteurs français

English descriptors

Abstract

The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10-9 W/(Hz)1/2 at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0099984

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors</title>
<author>
<name sortKey="Vitiello, Miriam S" uniqKey="Vitiello M">Miriam S. Vitiello</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 1</s1>
<s2>Sesto Fiorentino, 50019</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Sesto Fiorentino, 50019</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coquillat, Dominique" uniqKey="Coquillat D">Dominique Coquillat</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Viti, Leonardo" uniqKey="Viti L">Leonardo Viti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ercolani, Daniele" uniqKey="Ercolani D">Daniele Ercolani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Teppe, Frederic" uniqKey="Teppe F">Frederic Teppe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pitanti, Alessandro" uniqKey="Pitanti A">Alessandro Pitanti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beltram, Fabio" uniqKey="Beltram F">Fabio Beltram</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sorba, Lucia" uniqKey="Sorba L">Lucia Sorba</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Knap, Wojciech" uniqKey="Knap W">Wojciech Knap</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tredicucci, Alessandro" uniqKey="Tredicucci A">Alessandro Tredicucci</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Pisa, 56127</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0099984</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0099984 INIST</idno>
<idno type="RBID">Pascal:12-0099984</idno>
<idno type="wicri:Area/Main/Corpus">002166</idno>
<idno type="wicri:Area/Main/Repository">001596</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Charge density</term>
<term>Contact resistance</term>
<term>Detectors</term>
<term>Doping</term>
<term>Effective mass</term>
<term>Field effect transistors</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Light emitting diodes</term>
<term>Nanoelectronics</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Non linear effect</term>
<term>Optoelectronic devices</term>
<term>Photodetectors</term>
<term>Photovoltaic cell</term>
<term>Selenium</term>
<term>Semiconductor growth</term>
<term>Silicon</term>
<term>THz range</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Domaine fréquence THz</term>
<term>Détecteur</term>
<term>Semiconducteur III-V</term>
<term>Nanoélectronique</term>
<term>Croissance semiconducteur</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Silicium</term>
<term>Diode électroluminescente</term>
<term>Dispositif optoélectronique</term>
<term>Dispositif photovoltaïque</term>
<term>Photodétecteur</term>
<term>Transistor effet champ</term>
<term>Masse effective</term>
<term>Tellurure de gallium</term>
<term>Composé III-V</term>
<term>Arséniure d'indium</term>
<term>Synthèse nanomatériau</term>
<term>Epitaxie phase vapeur</term>
<term>Dopage</term>
<term>Sélénium</term>
<term>Densité charge</term>
<term>Résistance contact</term>
<term>Effet non linéaire</term>
<term>Electrode commande</term>
<term>Réseau(arrangement)</term>
<term>Si</term>
<term>InAs</term>
<term>0707D</term>
<term>8535</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10
<sup>-9</sup>
W/(Hz)
<sup>1/2</sup>
at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VITIELLO (Miriam S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COQUILLAT (Dominique)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VITI (Leonardo)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ERCOLANI (Daniele)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TEPPE (Frederic)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PITANTI (Alessandro)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BELTRAM (Fabio)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SORBA (Lucia)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KNAP (Wojciech)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TREDICUCCI (Alessandro)</s1>
</fA11>
<fA14 i1="01">
<s1>Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 1</s1>
<s2>Sesto Fiorentino, 50019</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12</s1>
<s2>Pisa, 56127</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université Montpellier 2 and CNRS, TERALAB-GIS, L2C UMR 5221</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>96-101</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000506742750170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0099984</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10
<sup>-9</sup>
W/(Hz)
<sup>1/2</sup>
at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>THz range</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Détecteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Detectors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photodétecteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photodetectors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Masse effective</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Effective mass</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>VPE</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Doping</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Doping</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Sélénium</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Selenium</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Densité charge</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Charge density</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Résistance contact</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Contact resistance</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Gates</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001596 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001596 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0099984
   |texte=   Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024